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Bundles of coinvariants

Vg(V ;M•)

��
Mg,n

Vg(V ;M•)(C,P•)

��
(C,P•)

fibers are vector spaces of coinvariants

Vg(V ;M•)(C,P•) := [M•]L(C,P•)(V ).



Vector spaces of coinvariants are quotients

For
I (C,P•) a stable n-pointed curve; and
I M1, . . . ,Mn finitely generated admissible modules over

a vertex operator algebra V ,

the vector space of coinvariants

[M•]L(C,P•)(V ) = M•/L(C,P•)(V ) ·M•

is the largest quotient of the tensor product

M• = ⊗n
i=1Mi

by the action of a Lie algebra

L(C,P•)(V ).
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To define these quotients

will describe the Lie algebra L(C,P•)(V ), and how it acts on
the tensor product of the modules M• = ⊗n

i=1M i .

There are two Lie algebras that act.

Surprisingly, their coinvariants are isomorphic [DGT2].

Before defining vertex operator algebras, and the main
ingredients that go into the construction of the bundles, I
briefly state our main results.



Summary of results (DGT I, DGT 2, DGT 3)
I. Vector spaces of coinvariants form quasi-coherent
sheaves onMg,n. If the modules are simple, they support
a projectively flat connection.

II. If V is (a) of CFT type, (b) rational, and (c) C2-cofinite,
then vector spaces of coinvariants

1. are finite dimensional;

2. satisfy factorization; and

3. are fibers of a vector bundle Vg(V ;M•) onMg,n.

4. The Chern character gives rise to a semi-simple CohFT.



A VOA that is

(a) of CFT type, (b) rational, and (c) C2-cofinite,

is said to be of CohFT-type.

I’ll define these terms later in the talk.



Results from representations of affine Lie algebras

[1987] Tsuchiya and Kanie: defined coinvariants for
smooth g = 0 with coordinates.

[1991] Tsuchiya, Ueno, and Yamada: coordinatized
(C,P•) ∈Mg,n; sheaves satisfy I and II (1-3)

[1993] Tsuchimoto: the vector bundles and the
connection descend toMg,n.

[2010] Fakhruddin: glob. gen. and first Chern class g = 0.

[2015] Marian, Oprea, Pandharipande: first Chern class in
the tautological ring.

[2017] Marian, Oprea, Pandharipande, Pixton, Zvonkine
show Chern characters give CohFT, derive expression.



Zhu’s coinvariants (generalizing [TUY])

[1994] Zhu defined coinvariants and conjectured
factorization for quasi primary generated (qpg) V.

[2005] Abe and Nagatomo VS finite dim
for C smooth, and qpg V satisfying (a) & (c).

[2005] Nagatomo and Tsuchiya (2005) show I and II (1-3)
for g = 0, V ∼= V ′, different hypothesis, extending Zhu’s
coinvariants for g = 0 curves with singularities.

[2005] Huang proved factorization
for g ∈ {0, 1}, V ∼= V ′ satisfying (a),(b) & (c).

[2019] Codogni showed factorization, all g, for
holomorphic V ∼= V ′ satisfying (a),(b) & (c).



Virasoro & FBZ coinvariants

[1991] Beilinson, Feigin, and Mazur construct coinvariants
and prove factorization for coordinatized curves and the
Virasoro VOA.

[2004] Frenkel and BenZvi define sheaves of coinvariants
for coordinatized points (C,P•) ∈Mg,n and modules over
conformal vertex algebras, generalizing [BFM]. They show
sheaves support a projectively flat connection and
mention that factorization is expected if V is rational.

[2019] [DGT1], [DGT2], and [DGT3]

[2020] We’re working on applications using Chern classes.



New Examples

Vertex algebras of CohFT-type include most in the
literature, including:

I Positive definite even lattice VOAs VL and related
“lattice type VOAs" ;

I Holomorphic VOAs like the moonshine module V \;
I Special examples like V`(g), Virasoro, and

generalizations.

New VOAs of CohFT-type from old ones:
1. If V 1, . . . ,V k of CohFT type then V 1 ⊗ · · · ⊗ V k is too;
2. commutants/cosets; and
3. orbifold algebras.



Commutant and coset examples

Commutant or Coset
For U a vertex subalgebra of V , conjecturally, if U and V
are both of CohFT-type, then ComV (U) is also of
CohFT-type.

Orbifold algebras Let G ⊂ Aut(V ). The orbifold vertex
algebra V G consists of the fixed points of G in V . If V is of
CohFT-type, G = Aut(V ) is a finite-dimensional algebraic
group. If G is also solvable, then V G will also be of
CohFT-type. Conjecturally, V G is always of CohFT-type.

Website with examples/info about many CohFT VOAs:
https://www.math.ksu.edu/~gerald/voas/

https://www.math.ksu.edu/~gerald/voas/


Why study these vector bundles?

Here are three reasons, based on what is known to be
true for the Verlinde bundles:

1. They may provide new examples of rational
conformal field theories (I don’t have much to say
about this).

2. Give rise to elements in the tautological ring, and
may be useful in testing Pixton’s conjectures.

3. May help study birational geometry ofMg,n.
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Chern classes of the bundles Vg(V ;M•) lie in the
tautological ring.

Question
Do they obey Pixton’s relations?



Global generation

If Vg(V ;M•) is globally generated
=⇒ c1(Vg(V ;M•)) is base point free.

Question
Can one specify conditions so that the bundles Vg(V ;M•)
are generated by their global sections?



Brief incomplete definition (mainly for notation)

A VOA is a tuple
(

V ,1V , ω,Y (·, z)
)

, where

I V = ⊕i∈NVi is a C-vector space, with dimVi <∞;
I 1V ∈ V0 (the vacuum vector),
I ω ∈ V2 (the conformal vector);
I Y (·, z) : V → End(V )[[z, z−1]] is a linear function

assigning to every element A ∈ V the vertex operator

Y (A, z) :=
∑
i∈Z

A(i)z
−i−1.

The datum
(
V ,1V , ω,Y (·, z)

)
, referred to as V , must satisfy

a number of axioms (look these up if interested).



The conformal structure comes from coefficients of the
vertex operators

Y (ω, z) =
∑
i∈Z

ω(i)z
−i−1.

Endomorphisms Lp := ω(p+1), are subject to the Virasoro
relations, giving the action of a Virasoro Lie algebra on V[
ω(p+1), ω(q+1)

]
= (p − q)ω(p+q+1) +

c
12

δp+q,0 (p
3 − p) idV .

Here c ∈ C is the central charge of V .

Moreover:

ω(1)|Vi
= i · idV , for all i ( so L0 acts like a grading operator ).

and Y
(
ω(0)A, z

)
= ∂zY (A, z) ( so L−1 acts like a derivative ).
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V-modules (also incomplete)

A pair (M,Y M( − , z)) with vector space M = ⊕d∈NMd , and
vertex operators

Y M(·, z) : V → End(M)[[z, z−1]],

A 7→ Y M(A, z) :=
∑
i∈Z

AM
(i)z
−i−1,

satisfying hypothesis, depending on type of module.

If M is simple, then for v ∈ Md .

L0(v) = (d + a)v .

Here a ∈ C is the conformal dimension of M.
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CohFT-type

A VOA of CohFT type if

(a) V is of CFT type

V0
∼= C;

(b) V is rational

finitely generated admissible modules
are completely reducible;

(c) V is C2-cofinite

dim(V/C2(V )) <∞,
C2(V ) = SpanC{A(−2)B : A,B ∈ V}.



Vertex algebras of CohFT-type have good properties:

I If V is rational (or V is C2-cofinite) there are just finitely
many simple modules.

I If V is rational and C2-cofinite, the simple admissible
modules are the same as the simple ordinary modules
[DLM, 1997 Remark 2.4].

I Ordinary modules satisfy additional finiteness
conditions, including

1. graded pieces Mλ are finite dimensional
2. for fixed λ, one has Mλ+` = 0 for ` >> 0.



V`(g)



Lattice VOAs

For L be a free abelian group of finite rank d together with
a positive-definite bilinear form (·, ·) such that (α, α) ∈ 2Z
for all α ∈ L.

The associated even lattice vertex algebra VL has finitely
many simple modules {VL+λ |λ ∈ L′/L}, where L′ is the dual
lattice, and contragredients are: V ′L+λ = VL−λ.

I VL is of CohFT-type with central charge c = d;
I The conformal dimension of the module VL+λ is (λ,λ)

2 ;
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We next define the Lie algebras and their actions on
modules. To describe the actions we first introduce the
“ancillary Lie algebra".



Ancillary Lie algebra

Given a pointed curve (C,P), and t a local parameter on
C at P, let

LP(V ) = V ⊗ C((t))/Im∇,

where ∇ : V ⊗ C((t)) −→ V ⊗ C((t)), is the map

A⊗ f 7→ L−1A⊗ f + A⊗ d
dt

f .



Generators and relations

LP(V ) has generators

A⊗ t j := A[j] ∈ LP(V ) = V ⊗ C((t))/Im∇,

and relations

[A[j],B[k]] =
∑
`≥0

(
j
`

)
(A(`)(B))[j+k−`].



LP(V ) acts on ⊗iM i

For M i a V -module “at Pi ∈ C”

n⊕
i=1

LPi
(V )×⊗iM

i → ⊗iM
i ,

((. . . ,A[kj ], . . .), (m1 ⊗ . . .⊗mn)) 7→

n∑
j=1

· · · ⊗mj−1 ⊗ AM j

kj
(mj)⊗mj+1 ⊗ · · · .



The vertex algebra bundle

To give an algebro-geometric view of LP(V ), we will use
the vertex algebra bundle

VC → C,

defined for a smooth curve C by Frenkel and BenZvi, and
extended in [DGT1] to stable curves with singularities. The
fiber over a a point P ∈ C is (non-canonically) isomorphic
to V (which is an infinite object, so this is non-standard).



Construction of VC using conformal structure



Algebro-geometric view of LP(V )

Theorem (FBZ, DGT 1)

LP(V ) ∼= H0(Dx
p,VC ⊗ ωC/Im∇),

where DX
p is the punctured disc on C at p.



FBZ/Chiral Lie algebra

Given a stable pointed curve (C,P•), set

L(C,P•)(V ) := H0(C \ ∪Pi ,VC ⊗ ωC/Im∇).

One can show that the restriction

H0(C \ ∪Pi ,VC ⊗ ωC/Im∇) −→
⊕

j

H0(Dx
Pj
,VC ⊗ ωC/Im∇),

σ 7→ (σ|DX
P1
, . . . , σ|DX

Pn
)

is a map of Lie algebras.



Diagonal action by restriction.

L(C,P•)(V )×⊗iM
i → ⊗iM

i ,

defined by

(σ,m1 ⊗ · · · ⊗mn) 7→
n∑

j=1

· · · ⊗mj−1 ⊗ σ|DX
Pj

·mj ⊗ · · · .

The vector space of coinvariants

Vg(V ;M•)(C,P•) := [M•]L(C,P•)(V ).

is the largest quotient of the tensor product ⊗iM i on which
L(C,P•)(V ) acts trivially.



Factorization

Factorization enables one to transform fibers of the
bundle to fibers defined on simpler curves. This leads to
recursions, and allows one to make inductive arguments.
This is the crucial ingredient allowing ranks of such
bundles, and their Chern characters to be given explicitly.
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At curve with nonseparating node:

Theorem (Factorization)
For V a conformal vertex algebra of CohFT-type, then with
the notation as in the picture

V (V ;M•)(C,P•)
∼=
⊕

W∈W

V
(
V ;M• ⊗W ⊗W ′)(

C̃,P•tQ•
) ,

whereW is set of simple V-modules, and Q• = (Q+,Q−).



At a curve with a separating node:

V
(
V ;M• ⊗W ⊗W ′)

(C̃,P•tQ•)

∼=
⊕

W∈W

V
(
V ;M•+ ⊗W

)
X+ ⊗ V

(
V ;M•− ⊗W ′)

X−

where X± = (C±,P±• tQ±), and M•± are the modules at
the P±• on C±.



The idea of the proof of factorization

Insert a trivial module Z at the two points of C̃ lying over Q
so coinvariants remain the same (trivial modules don’t
effect coinvariants).

This almost works.
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We obtain a diagram

[M• ⊗ Z ]L
(C̃,P•∪Q•)

(V )

��

[M•]L
(C̃,P•)

(V ,D)

��

hoo

[M• ⊗ Z ]L
(C̃,P•∪Q•)

∼= // [M•]L(C,P•)

.

Finite dimensionality of the fibers is important to our
argument. Taking duals, we work with vector spaces of
conformal blocks via correlation functions.



Chern characters form a CohFT [DGT3]

Before describing a semisimple cohomological field
theory (& other terms), we mention some consequences
of this result extending [MOPPZ 2017].



Ranks

The ranks of Vg(V ;M•), which are the degree zero Chern
classes of the bundles, form a topological quantum field
theory [TQFT], and can be computed recursively from 3
point ranks [fusion rules].



Examples [DGT3]

Any bundle produced from a holomorphic vertex algebra
of CohFT-type has rank one.



Let L be a positive definite even lattice such that
L′/L ∼= Z/mZ, for m ≥ 2, and
W = {V = W0,W1, . . . ,Wm−1} be the simple VL-modules.

Then

rank Vg

(
VL;W

⊗n0
0 ⊗ · · · ⊗W⊗nm−1

m−1

)
= mg δ∑m−1

j=0 jnj ≡m 0.

In particular, if g = 0 these also have rank one.
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Corollary (DGT3)

1. From the Chern character one can explicitly solve for
the Chern classes; and

2. since the CohFT is semi-simple, these Chern classes lie
in the tautological ring.



First Chern class

For V a VOA of CohFT-type with central charge c,
n simple V -modules M i of conformal dimension ai ,
c1 (Vg(V ;M•)) is

rkVg(V ;M•)

(
c
2
λ+

n∑
i=1

aiψi

)
− birrδirr −

∑
i,I

bi:Iδi:I ,

birr =
∑

W∈W

aW · rkVg−1
(
V ;M• ⊗W ⊗W ′)

bi:I =
∑

W∈W

aW · rkVi

(
V ;M I ⊗W

)
· rkVg−i

(
V ;M Ic ⊗W ′

)
.



Simplest example:

V any holomorphic VOA of central charge c:

c1 (Vg(V ;V •)) =
c
2
λ.

In particular, for the monster V \:

c1

(
Vg(V \; (V \)•)

)
= 12λ.

These are all trivial onM0,n.
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Simple family from lattices, notation

Fix m ≥ 2, and n integers mi ≤m− 1 such that∑
1≤i≤n mi = km, for some k ≥ 1, and let (L,q) be an even

lattice of (arbitrary) rank d for which L′/L ∼= Z/mZ. From
this data there is an associated vertex operator algebra
VL and n simple VL-modules W i = VL+mi

of conformal
weight ci =

q(mi)
2 ≥ 0 (q is the quadratic form).

We next give c1(V0(VL;W •)).



Simple family from lattices, first Chern class

With notation from prior slide, onM0,n one has

c1 (V0(VL;W
•)) =

n∑
i=1

ciψi −
∑

I⊂[n],p1∈I

q
(∑

i∈I mi

)
2

δ0,I ,

where q
(∑

i∈I mi

)
= 0 if

∑
i∈I mi ≡ 0 (mod m).



For FA,B,C,D any F-Curve onM0,n, one has

2c1 (V0(VL;W
•)) · FA,B,C,D

= q
(∑

a∈A

ma

)
+ q

(∑
b∈B

mb

)
+ q

(∑
c∈C

mc

)
+ q

( ∑
d∈A∪B∪C

md

)
− q

( ∑
a∈A∪B

ma

)
− q

( ∑
a∈A∪C

ma

)
− q

( ∑
d∈B∪C

md

)
. (1)

These are all nonnegative:
Lattice divisors like this are F-nef.



Question

What do these bundles tell us aboutMg,n?

This is what we are working on now.
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The End (thank you).


